Raphaele Romelaer, Virginie Kruger, J. Marshall Baker, and William R. Dolbier, Jr.*

Contribution from the Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200 Received June 29, 2000

Abstract: When CHClF₂ and CHF₃ are subjected to high-temperature, gas-phase flow pyrolysis in the presence of H₂, they are converted, via a free radical chain mechanism, to CH₂F₂, CHF₂CHF₂, and CF₃CH₂F in good yield. Optimal conditions for pyrolysis of CHClF₂ involve a high conversion (92%) at 650 °C with an observed yield of products = 18, 17, and 28%, respectively, whereas optimal conditions for CHF₃ involve a low conversion (24%) at 775 °C, but a higher yield of products (26, 6, and 39%, respectively).

The high-temperature (>600 °C) pyrolysis of chlorodifluoromethane (FC-22) comprises the major industrial source of tetrafluoroethylene (TFE).^{1,2} The mechanism of this process has been demonstrated to involve unimolecular extrusion of molecular HCl to form difluorocarbene [CF₂:], which then dimerizes to form TFE.³ The kinetic and thermodynamic parameters associated with this reaction have been studied extensively, both experimentally and theoretically,^{4–8} and although there remains ambiguity in some of the values, particularly with respect to the heat of formation of CF₂: (recommended value, -44 kcal/ mol),⁹ the reaction is considered chemically and thermochemically very well defined, with reversible formation of CF₂: competing with its dimerization to form TFE.

$$\begin{array}{c} H \\ CI \\ F \\ H \\ CI \\ F \\ H \\ H^{0} \\ -112.3 \\ \Delta H^{0} = 46.2 \\ 2 \\ CF_{2} \\ \Delta H^{0} = -70 \\ CF_{2} = CF_{2} \\ 2 \\ x (-44) \\ -157 \end{array}$$

The pyrolysis of CHF₃ (FC-23), although much less studied and requiring considerably higher temperatures (>750 °C), follows essentially the same mechanistic course, and it therefore

- (3) Hudlicky, M. Chemie der Organischen Fluoroverbindungen; Veb Deutscher Verlag der Wissenschaften: Berlin, 1960.
 - (4) Gozzo, F.; Patrick, C. R. Tetrahedron 1966, 22, 3329-3336.

(5) Edwards, J. W.; Small, P. A. Ind. Eng. Chem. Fundam. 1965, 4, 396-400.

(6) Barnes, G. R.; Cox, R. A.; Simmons, R. F. J. Chem. Soc. B 1971, 1176–1180.

(7) Schug, K. P.; Wagner, H. G.; Zabel, F. Ber. Bunsen-Ges. Phys. Chem. 1979, 83, 167–175.

(8) Su, M.-C.; Kumaran, S. S.; Lim, K. P.; Michael, J. V.; Wagner, A. F.; Dixon, D. A.; Kiefer, J. H.; DiFelice, J. J. Phys. Chem. 1996, 100, 15827–15833.

(9) Paulino, J. A.; Squires, R. R. J. Am. Chem. Soc. 1991, 113, 5573-5580. also comprises a potentially useful source of TFE.7,10-12

CHF₃
$$\xrightarrow{\Delta_1 > 750 \text{ °C}}$$
 HF + $CF_2 \longrightarrow CF_2=CF_2$
 $E_a = 72 \text{ kcal/mol}$
 $\Delta H^\circ = 54$

In an effort to develop broader use of these ready sources of CF_2 ;, studies of copyrolysis of $CHClF_2$ with hydrogen were carried out independently by Elf Atochem¹³ and DuPont,¹⁴ and it was discovered that under appropriate conditions this process leads to effective quenching of TFE formation with resultant formation of CH_2F_2 (FC-32), CHF_2CHF_2 (FC-134), and CF_3 - CH_2F (FC-134a).

CHXF₂
$$\xrightarrow{\Delta, H_2}$$
 CH₂F₂ + CHF₂CHF₂ + CF₃CH₂F
FC-22, X = Cl FC-32 FC-134 FC-134a
FC-23, X = F

Brief mention of a pyrolytic reaction of $CHClF_2$ with H_2 to form CH_2F_2 had been made by DiFelice and Ritter in 1994.¹⁵ These authors interpreted the CH_2F_2 formation as deriving from competitive insertion of CF_2 : into H_2 , and no mention was made of either CHF_2CHF_2 or CF_3CH_2F being formed.

Co-pyrolysis of CHF₃ (FC-23) with H₂ led to similar results.¹⁶ In view of the commercial interest in hydrofluorocarbons (HFC's) such as CH₂F₂ and CF₃CH₂F, a study of the mechanisms of these reactions was initiated in order to determine how modification of reaction conditions might affect product yields and selectivities.

(11) Tschuikow-Roux, E. J. Chem. Phys. **1965**, 42, 3639–3642.

(13) Schirmann, J.-P.; Hub, S.; Lantz, A. Patent WO 96/25377, 1996.
 (14) Manogue, W. H.; Noelke, C. J.; Swearingen, S. H. Patent WO 95/24369, 1995.

(16) Private communication, E. Lacroix and S. Hub.

⁽¹⁾ Park, J. D.; Benning, A. F.; Downing, F. B.; Lancery, J. F.; McHarness, R. C. Ind. Eng. Chem. 1947, 39, 354.

⁽²⁾ Hamilton, J. M., Jr. In *Advances in Fluorine Chemistry*; Stacey, M., Tatlow, J. C., Sharpe, A. G., Eds.; Butterworth: Washington, 1963; Vol. 3, pp 117–180.

⁽¹⁰⁾ Tschuikow-Roux, E.; Marte, J. E. J. Chem. Phys. 1965, 42, 2049–2056.

⁽¹²⁾ Politanskii, S. F.; Shevchuk, V. U. Kinet. Catal. 1968, 9, 411-417.

⁽¹⁵⁾ DiFelice, J. J.; Ritter, E. R. *Abstracts of Papers*, 207th National Meeting of the American Chemical Society, Spring 1994, San Diego, CA; American Chemical Society: Washington, DC, 1994; 24-Fuel, pp 158–162.

Experimental Section

Chart 1

Pyrolysis. The pyrolyses of $CHClF_2$ or CHF_3 in the presence of H_2 were carried out at atmospheric pressure and isothermally in a continuous-flow reactor (Chart 1).

All gas inlets were controlled by the four mass flow meters (Brooks). Sources of the chemicals were as follows: CHClF₂ (Elf Atochem), CHF₃ (Elf Atochem, 95%), D₂ (Strate Welding Supply Co., 99.7%), and H₂ and He (Strate Welding Supply Co., 95–97% and 99.995%).

The gas mixtures passed through the quartz reactor (CHClF₂ pyrolysis) or the Inconel 600 reactor (CHF₃ pyrolysis), which is heated by a furnace (Applied Test Systems, Series 3210) with three thermocouples. Three Omega controllers (CN 76000) (indicated as TRC in Chart 1) control the temperature of the three-heating-zone furnace. The temperature inside the reactor is indicated by a thermocouple (Omega, Type K) with three junctions (indicated as TI in Chart 1).

At the outlet, the gases are passed through a KOH solution (1 M) in order to neutralize HCl and HF and are dried by anhydrous calcium sulfate (Drierite). An internal standard, CH₄ (CHClF₂ pyrolysis) or CHClF₂ (CHF₃ pyrolysis), is then introduced in order to determine conversion, yields, and carbon balance after reaction and GC analysis. The reaction time (*t*) represents the ratio between the reactor volume (quartz, V = 150 cm³; Inconel reactor, V = 100 cm³) and the total flow rate at the reaction temperature (cm³·s⁻¹).

The GC analysis of the gas mixture was performed on a HP chromatograph using the following operating conditions: column, Plot Al₂O₃/KCl (Chrompack), 50 m × 0.53 mm, film 10 μ m; carrier gas, N₂ (11 mL/min); temperature, 40 °C (5 min) to 200 °C (at 4 °C/min); detector, FID, 250 °C; injector temperature, 250 °C. The products were identified by comparison of their GC retention times and mass spectra with those of pure samples. Quantitative analyses of the product/ standard ratios were obtained by comparison with mixtures prepared for calibration purposes. The relative response coefficients (k_i/k_{std}) of each compound are given in Table 1.

After the determination of the inlet flow of $CHXF_2$ and the outlet flow rates of $CHXF_2$ and each product, the results given in the tables and represented graphically in the figures were calculated as indicated below (X = Cl or F):

conversion of CHXF₂ =
$$\frac{n(CHXF_2)_i - n(CHXF_2)_o}{n(CHXF_2)_i} \times 100$$

= $\frac{\Delta n(CHXF_2)}{n(CHXF_2)_i} \times 100$

where $n(CHXF_2)_i$ is the inlet molar flow rate (mmol·h⁻¹) and $n(CHXF_2)_o$ is the outlet molar flow rate (mmol·h⁻¹).

yield (%)
(from consumed CHXF₂) =
$$\frac{x[\text{product flow rate (mmol·h-1)]}}{\Delta n(\text{CHXF}_2)} \times 100$$

where x = 2 for C₂ products and x = 1 for C₁ products.

carbon balance (of consumed
$$CHXF_2$$
) = \sum yields of products

Table 1. Relative Response Coefficients (k_i/k_{std}) Determined by GC-FID

	k	$k_{ m i}/k_{ m std}$		
Ι	$std = CH_4$	$std = CHClF_2$		
CHClF ₂ (FC-22)	3.83	1		
CHF ₃ (FC-23)	n/a	2.32		
CHF ₂ CHF ₂ (FC-134)	0.73	0.19		
CF ₃ CH ₂ F (FC-134a)	0.73	0.19		
CH ₂ F ₂ (FC-32)	2.22	0.58		
$CF_2 = CF_2 (TFE)$	0.73	0.19		
CH ₄	1	0.26		

Computational Methodology. Density functional theory calculations were performed using the Gaussian 98 program package.¹⁷ Reactants, products, intermediates, and transition structures were optimized using Becke's hybrid three-parameter functional (B3LYP)18 and the 6-31G-(d) basis set.¹⁹ Restricted and unrestricted wave functions were used for closed- and open-shell species, respectively. Using the same level of theory, vibrational frequency calculations were performed on all stationary points to identity transition structures and determine thermal/ zero-point energies. Transition structures were characterized by a single imaginary frequency. Thermochemical information at temperature Tand P = 1.00 atm was obtained using frequencies scaled by 0.9804.²⁰ An intrinsic reaction coordinate (IRC) calculation was performed for each transition structure to examine the reaction pathway for each elementary step. Single-point energies were calculated for each structure and transition state using the B3LYP level of theory, using the 6-311+G(2df,2p) basis set.²¹

Results and Discussion

The pyrolysis of CHClF₂, either alone or in the presence of He, leads to formation of TFE as the major product. When the reaction is run at 1 atm, at 700 °C, with a contact time of 0.3 s, conversion of CHClF₂ is 25%, with TFE being formed in 90% yield along with 10% of other products, the major ones being cyclo-C₄F₈, HCF₂CF₂Cl, and H(CF₂)₃Cl.¹ In no case were

(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

(18) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

(19) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acta 1973, 28, 213-222.

(20) Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.

(21) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. 1989, 91, 1062–1065.

Scheme 1. Proposed Free Radical Chain Mechanism for the Thermal Reaction of $CHXF_2$ (X = Cl or F) with H_2

the compounds of interest, CH_2F_2 , HCF_2CHF_2 , or CF_3CH_2F , reported as being present in significant amounts in the pyrolysate when $CHClF_2$ was pyrolyzed *in the absence* of H_2 . Likewise, all studies of the pyrolysis of CHF_3 (FC-23) reported a similarly clean formation of TFE.

In contrast, the co-pyrolysis of CHClF₂ and H₂ led to quenching of the formation of TFE, with concomitant formation of hydrofluorocarbons (HFC's) CH₂F₂, HCF₂CHF₂, and CF₃-CH₂F as major products.

Mechanistic Hypothesis and Computational Work. Although it is tempting to attribute the formation of CH_2F_2 to the simple insertion of CF_2 : into the H–H bond, it is unlikely that such an insertion process contributes significantly to CH_2F_2 formation. Unlike CH_2 : and even CHF: (which have calculated barrier heights of 2 and 7 kcal/mol, respectively, for insertion into H_2),^{22,23} with a calculated barrier of 34 kcal/mol, the process of H_2 insertion by CF_2 : does not, in practice, appear able to compete kinetically with its dimerization to TFE,²⁴ the barrier for which has been estimated to be 2.8 kcal/mol.⁸

Instead, the formation of all three HFC products, CH_2F_2 , CHF_2CHF_2 , and CF_3CH_2F , is attributed to a free radical chain process (Scheme 1) that becomes mechanistically accessible only when the pyrolyses of $CHClF_2$ or CHF_3 are carried out in the presence of H_2 .

Free radical processes have previously been proposed to intervene during the pyrolysis of CHClF₂, particularly when long contact times are used, with such processes being proposed to lead not only to TFE, but also to most of the observed oligomeric hydrochlorofluorocarbon side products.²⁵

We propose that initiation of the productive free radical chain process described in Scheme 1 derives primarily from the reaction of H₂ with "activated" [TFE]*, which is created with about 70 kcal/mol of excess energy when it is formed by the combination of two CF₂'s. With more excess energy than the calculated π -bond energy of TFE,²⁶ this [TFE]* species should act much like a perfluoroalkyl "diradical" when it collides with an H₂ molecule, and it should thus abstract H quite readily. Activated TFE "diradicals" have previously been proposed as reactive intermediates in TFE dissociation and CF₂: carbene recombination reactions.^{27,28}

- (23) Ignatyev, I. S.; Schaefer, H. F., III. J. Am. Chem. Soc. 1997, 119, 12306-12310.
- (24) Battin-Leclerc, F.; Smith, A. P.; Hayman, G. D.; Murrells, T. P. J. Chem. Soc., Faraday Trans. **1996**, *92*, 3305–3313.
- (25) Zhang, Z.; Pollard, R. Int. J. Chem. Kinet. 1995, 27, 1151–1164.
 (26) Wang, S. Y.; Borden, W. T. J. Am. Chem. Soc. 1989, 111, 7282–7283.

Once radicals are produced in the presence of CF₂:, TFE, and H₂, reasonable propagating steps can be proposed that will allow formation of all three of the observed products. Both CH₂F₂ and CHF₂CHF₂ can be formed via the sequential addition of two hydrogen atoms shown in Scheme 1, but explaining CF₃-CH₂F (FC-134a) is another matter. Formation of CF₃CH₂F requires a shift of fluorine at some point in the mechanism. Again, it is tempting to propose that formation of CF₃CH₂F derives from insertion of H₂ into fluorotrifluoromethylcarbene, CF₃CF:, which could be formed by F-shift rearrangement of the activated [TFE]*. If formed, CF₃CF: should indeed readily undergo insertion into H₂ (activation barrier ~ 4.7 kcal/mol), as indicated by our DFT calculations. However, the very large

calculated barrier for rearrangement of TFE to CF₃CF: (\sim 68.8 kcal/mol activation barrier)²⁹ makes it unlikely that such a process can be responsible for the significant amount of CF₃-CH₂F formed in the reaction. Instead, we propose that the F-shift most likely occurs after TFE has picked up its first H atom, at the CHF₂CF₂⁻ radical stage:

$$CHF_2CF_2 \bullet \bullet CHFCF_3$$

 $E^{\dagger}(calcd) = 29.2 \text{ kcal/mol}$

Reports of fluorine atom shifts in carbon radical systems are rare, but such rearrangements are apparently feasible.^{30–35} In

- (27) Buravtsev, N. N.; Kolbanovsky, Y. A. J. Fluorine Chem. **1999**, 96, 35–42.
- (28) Buravtsev, N. N.; Kolbanovsky, Y. A.; Ovsyannikov, A. A. Mendeleev Commun. 1994, 190–191.
- (29) Cramer, C. J.; Hillmyer, M. A. J. Org. Chem. 1999, 64, 4850-4859.
- (30) Kotaka, M.; Sato, S.; Shimokoshi, K. J. Fluorine Chem. 1988, 41, 371–382.
- (31) Kotaka, M.; Sato, S.; Shimokoshi, K. J. Fluorine Chem. 1987, 37, 387–396.
- (32) Kotaka, M.; Kohida, T.; Sato, S. Z. Naturforsch. 1990, 45b, 721–722.
 - (33) Sung, K.; Tidwell, T. T. J. Org. Chem. 1998, 63, 9690-9697.
- (34) Kovtonyuk, V. N.; Kobrina, L. S.; Volodin, A. M. Russ. Chem. Bull. **1995**, 44, 95–98.
- (35) Dolbier, W. R.; Palmer, K.; Koroniak, H.; Zhang, H. Q.; Goedkin, V. L. J. Am. Chem. Soc. **1991**, 113, 1059–1060.

Table 2. Pyrolysis of $CHClF_2$ in He and in H₂ at 650 °C

conditions				yie	eld (%)		carbon
He/H ₂ /CHClF ₂	<i>t</i> (s)	conv (%)	CH ₂ F ₂	$CF_2 = CF_2$	CF ₃ CH ₂ F	CHF ₂ CHF ₂	balance (%)
32/5/1	3	90	4	43	6	2	55
0/5/1	6	91	19	1	25	16	61
0/10/1	5	92	18	1	28	17	64

Figure 1. Conversion and carbon balance vs temperature during the pyrolysis of CHClF₂ in H₂ (H₂/CHClF₂ = 10, t = 5 s).

Figure 2. Yields vs temperature during the pyrolysis of CHClF₂ in H_2 (H₂/CHClF₂ = 19, t = 5 s).

the accompanying paper, UB3LYP/6-311+G(2df,2p)//UB3LYP/ 6-31G(d) calculations provided an estimated barrier (E^{+}) of 29.2 kcal/mol for this rearrangement.³⁶ On the basis of these calculations, we believe that the unimolecular 1,2-fluorine atom shift of CHF₂CF₂' should be competitive with its second, bimolecular H atom abstraction.

Therefore, the free radical chain mechanism, initiated and facilitated by the presence of H_2 as depicted in Scheme 1, appears to explain the formation of all three product HFC's.

Pyrolysis of CHCIF₂ in the Presence of H₂. All pyrolyses of CHCIF₂ were carried out at atmospheric pressure and isothermally in a continuous-flow reactor constructed of quartz, with the goal of determining the effect of temperature, time of reaction, ratio of H₂/CHCIF₂, and the presence of He diluant on the yields of the three HFC products and on the conversion of CHCIF₂. These results were then compared with those obtained with CHF₃.

(i) Effect of the Reaction Temperature. The pyrolysis of CHClF₂ was carried out between 600 and 650 °C in the presence of an excess of hydrogen (H₂/CHClF₂ = 10, t = 5 s). The conversion of CHClF₂ as a function of temperature and the carbon balance, as well as the observed yields of product formation, are presented in Figures 1 and 2.

The data represented in these figures indicate that, over the 50 °C range of temperature studied, there is both a dramatic increase in the conversion of CHClF₂ (from 60% at 600 to 95% at 650 °C) and a significant inhibition of formation of tetrafluoroethylene (from 18% at 600 °C to 1% at 650 °C). HFC yields rise slightly over this range, remaining just about optimal at 650 °C (CH₂F₂, 18%; CHF₂CHF₂, 16%; and CF₃CH₂F, 26% yield), whereas the carbon balance drops slightly. No coking is observed under these conditions, and most of the unaccounted mass is believed to correspond to the formation of hydrochlorofluorocarbon C₃ and C₄ byproducts that were not quantified by our GC analytical process. With 95% conversion and 60% overall yield of the hydrofluorocarbons of interest, a temperature of 650 °C is consequently considered optimal for selective preparation of HFC's CH_2F_2 , CHF_2CHF_2 , and CF_3CH_2F via the pyrolysis of $CHClF_2$ in the presence of H_2 .

(ii) Impact of Dilution with Helium. The effect of changing the ratio of $H_2/CHClF_2$ at optimal temperature, 650 °C, was examined, as was the impact of diluting the reactants with He.

The data in Table 2 indicate that halving the H₂/CHClF₂ ratio from 10 to 5 (only modest lowering of the H₂ partial pressure from 0.9 to 0.83 atm) concentration has little impact on either the conversion of CHClF₂ or the efficiency of product formation. However, diluting the mixture with a large amount of helium, while not affecting conversion of CHClF₂, modifies drastically the distribution of the products, diminishing HFC formation and strongly favoring TFE formation (43% yield). This result undoubtedly derives from a combination of two factors: (a) the significant lowering of the partial pressure of H₂ (from 0.83 to 0.13 atm), and (b) the collisional deactivation (by He) of the activated CF₂=CF₂* formed from combination of two CF₂:'s, both of which would kinetically inhibit the free radical chain process.

(iii) Effect of a Radical Initiator. Since a free radical chain process is proposed as the mechanism of HFC formation, the effect of adding a free radical initiator to the reaction flow was examined. Perfluoroneooctane (BDE \approx 40 kcal/mol) was chosen as initiator,³⁷ since it should dissociate rapidly into two perfluoro-*tert*-butyl radicals at the temperatures being used in the CHCIF₂ pyrolyses. Such *t*-C₄F₉ radicals should react rapidly with H₂ to initiate the free radical chain process.

Table 3 compares the results of CHClF₂/H₂ pyrolysis with and without such initiation. Use of an initiator is seen to enhance conversion and carbon balance slightly, while enhancing CH₂F₂ formation, partially at the expense of the C₂ HFC products. This can be understood, within the context of our free radical chain mechanism, as deriving from generation of H[•] *earlier* in the mechanism, when the CF₂: moiety should be more prevalent. (Under the normal CHClF₂/H₂ pyrolysis conditions, H• would not be formed until [CF₂=CF₂]* is formed by dimerization of CF₂:, according to the postulated mechanism.)

(iv) Use of Other Difluorocarbene Sources. To gain further insight into the CF_2 : \rightarrow HFC process from CHClF₂, which is complicated by cogeneration of HCl, three different thermal CF₂: sources that do not generate HCl were used under

⁽³⁶⁾ Romelaer, R.; Baker, J. M.; Dolbier, W. R., Jr. J. Am. Chem. Soc. 2001, 123, 6773–6777.

Table 3. Pyrolysis of CHClF₂ in H₂ at 650 °C in the Presence of Initiator, Perfluoroneooctane (5% Molar vs CHClF₂)

COL	nditions				yi	eld (%)		carbon
H ₂ /CHClF ₂	init	<i>t</i> (s)	conv (%)	CH ₂ F ₂	$CF_2 = CF_2$	CF ₃ CH ₂ F	CHF ₂ CHF ₂	balance (%)
10/1 10/1	no yes	4 4	92 96	19 27	1 0	26 24	14 11	60 62

Table 4. Production of HFC's Using Varied Sources of Difluorocarbene: CHClF₂, Hexafluorocyclopropane (HFCP), Hexafluoropropylene Oxide (HFPO), and Tetrafluoroethylene (TFE) (H_2 /:CF₂ Source = 10)

condition	18			yi	eld (%)		carbon
:CF ₂ source	<i>t</i> (s)	conv (%)	CH ₂ F ₂	$CF_2 = CF_2$	CF ₃ CH ₂ F	CHF ₂ CHF ₂	balance (%)
CHClF ₂	5	92	18	1	28	17	64
HFCP	5	100	35	1	26	15	77
HFPO	5	100	28	3	26	16	73
TFE	5	99	14	n/a	28	16	58

Table 5. Pyrolysis of CHClF₂ in D₂ versus H₂ at 650 °C

conditions H ₂ /D ₂ /CHClF ₂	<i>t</i> (s)	conv (%)	$\frac{\text{yield (\%)}}{\text{CH}_2\text{F}_2}$	CF ₂ =CF ₂	CF ₃ CH ₂ F	CHF ₂ CHF ₂	carbon balance (%)
10/0/1	5	92	18	1	28	17	64
0/10/1	5	87	17 ^a	11 ^a	21 ^a	11 ^a	60

^a Partially deuterated products are obtained (see Table 6).

copyrolysis conditions with H₂ at 650 °C. Hexafluorocyclopropane (HFCP) and hexafluoropropylene oxide (HFPO) are traditional, lower temperature sources of CF₂:, with HFCP decomposition starting at 190 °C³⁸ and HFPO decomposition at 150 °C.^{39,40} At 650 °C, complete conversion of these CF₂: sources is likely. Although TFE is not ordinarily considered a source of CF₂:, it is recognized that TFE formation is *reversible* under the conditions (>650 °C) of CHClF₂ pyrolysis, so it was tested as a potential source of CF₂: and HFC's. Table 4 gives the results of these experiments.

Although enhanced carbon balance and CH₂F₂ yield are observed for the "pure" CF₂:-forming reagents (HFCP and HFPO), nevertheless all four CF₂: sources give remarkably similar product mixtures. Most notably, the yields of CHF₂-CHF₂ and CF₃CH₂F in each run are virtually identical! HCl does not, therefore, seem to be playing a determining role in the free radical chain process. Because CHClF₂ does not undergo thermal conversion to HFC's in the absence of H₂, HCl cannot be capable of donating an H atom to initiate a free radical chain process analogous to Scheme 1. This may be because HCl will preferably undergo a four-center addition reaction to activated TFE to form CHF₂CF₂Cl (the reverse of the unimolecular β -elimination process).⁴¹ Of course, that is not to say that HCl cannot be a source of H atoms once the free radical process has been initiated by the intervention of H₂.

(v) Use of D_2 in Place of H_2 . When D_2 was used in place of H_2 , the results in terms of CHClF₂ conversion and HFC production (as shown in Table 5) were remarkably similar to those obtained with H_2 . Diminished conversion and C_2 -HFC formation are perhaps indicative of an isotope effect in the propagation steps generating these products,^{42,43} whereas production of difluoromethane, which is determined by D[•] addition to CF₂:, is not significantly affected. The observed increase in

Table 6. D/H Distribution in Products, As Determined by GC/MS and Yields Obtained from the CHClF₂ Pyrolysis in D₂ (650 °C, D₂/CHClF₂ = 10, t = 5 s)

compounds	GC/MS distribution (%)	molecule deuteration (%)	yield (%)
CHClF ₂	20	80	2.6
CDClF ₂	80		10.4
CH_2F_2	9	69	1.5
CHDF ₂	45		7.75
CD_2F_2	46		7.8
CF ₃ CH ₂ F	4	83	0.8
CF ₃ CHDF	27		5.7
CF ₃ CD ₂ F	69		14.5
CHF ₂ CHF ₂	5	80	0.6
CHF ₂ CDF ₂	31		3.4
CDF_2CDF_2	64		7.0

TFE yield is another indication of the diminished efficiency of the chain process in D_2 .

The observed distribution of deuterium in the compounds of interest, which was determined by GC/MS analysis for each compound, is given in Table 6.

Deuterium incorporation into the products as well as into recovered chlorodifluoromethane is significant. The significant incorporation of deuterium into recovered chlorodifluoromethane and the approximately equal amounts of $CHDF_2$ and CD_2F_2 can be rationalized by the sequence below:

Formation of mainly dideuterated C_2 -HFC's, CDF₂CDF₂ and CF₃CD₂F (64% and 69%, respectively), is consistent with the sequential deuterium atom abstractions shown in Scheme 1.

⁽³⁸⁾ Birchall, J. M.; Fields, R.; Hazeldine, R. N.; McLean, R. J. J. Fluorine Chem. 1980, 15, 487–495.

⁽³⁹⁾ Millauer, H.; Schwertfeger, W.; Siegemund, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 161–179.

⁽⁴⁰⁾ Krusic, P. J.; Roe, D. C.; Smart, B. E. Isr. J. Chem. **1999**, 39, 117–123.

⁽⁴¹⁾ Volkov, G. V.; Barabanov, V. G.; V'yunov, K. A.; Maksimov, B. N. J. Gen. Chem. USSR (Engl. Transl.) **1990**, 60, 1029–1032.

⁽⁴²⁾ At these temperatures, isotope effects should be relatively small. The primary isotope effect, $k_{\rm H}/k_{\rm D}$, for CF₃ radical reacting with H₂ versus D₂ can be calculated to have a value of ~2.1 at 650 °C.⁴³

⁽⁴³⁾ Arthur, N. L.; Donchi, K. F.; McDonell, J. A. J. Chem. Soc., Faraday Trans. 1 1975, 71, 2431.

Figure 3. Conversion and carbon balance vs temperature during pyrolysis of CHF₃ in H₂ (-) and in He (- - -) between 650 and 850 °C (He or H₂/CHF₃ = 10, t = 3 s, Inconel reactor).

Figure 4. Yield vs reaction temperature during the pyrolysis of CHF_3 in H_2 (T = 700-850 °C, $H_2/CHF_3 = 3$, t = 4 s, Inconel reactor).

Pyrolysis of CHF₃ in the Presence of H₂. Although requiring significantly higher temperatures than the pyrolyses of CHClF₂, the pyrolysis of CHF₃ (FC-23) constitutes an equally good source of difluorocarbene and TFE, and it should therefore also produce HFC's when the pyrolysis is carried out in the presence of H₂. Our investigation of the pyrolysis of CHF₃ was carried out in an Inconel 600 reactor, at atmospheric pressure and at temperatures between 650 and 850 °C.

Initial experiments compared the thermal behavior of CHF_3 in the presence of He versus that in the presence of H₂ (He or H₂/CHF₃ = 10, reaction time of 3 s). Comparisons of the total conversion and the carbon balance as a function of the reaction temperature are presented in Figure 3. Conversion of CHF₃ is the same in He and H₂, which suggests a common primary decomposition pathway for the two processes.

However, the carbon balance is much higher in H₂, and the nature of the products is drastically different in the two media. TFE is the major (almost exclusive) product (60–70% yield) in He at temperatures between 650 and 800 °C, whereas a mixture of the usual HFC's (60–65% total yield) is formed when CHF₃ is pyrolyzed at temperatures from 650 to 775 °C in a flow of H₂. A large amount of methane (\sim 30% yield) is also observed in the presence of H₂, as a result of wall-catalyzed hydrogenolysis processes in the Inconel 600 reactor. Figure 4 shows the nature of the product mixtures as a function of temperature.

Further experiments showed that low ratios of H_2/CHF_3 (~3:1) and short reaction times (~4–5 s) provided optimal results, in terms of carbon balance and HFC yields. Higher temperatures favor the formation of increasing amounts of byproducts, such as methane in the Inconel 600 reactor, but also of ethane and mono- and difluorobenzene (detected by GC/MS). Figures depicting these and other optimization experiments can be found in the Supporting Information.

Table 7. Pyrolysis of CHF₃ and of CHClF₂ in H₂

reagent		CHF ₃	CHClF ₂
reactor	(°C)	Inconel	quartz
pressure	(C) (atm)	1	1
H ₂ /reagent		3	10
conversion	(S) (%)	4 21	5 92
CF ₃ CH ₂ F yield	(%)	39	28
CH ₂ F ₂ yield	(%)	26	18
CHF ₂ CHF ₂ yield	(%) (%)	6 11	17
carbon balance	(%)	82	63

Thus, at 775 °C, using a ratio of H_2/CHF_3 equal to 3 and a contact time of 4 s, the total conversion is 21%, with the yields of CF₃CH₂F, CH₂F₂, and CHF₂CHF₂ being 39%, 26%, and 5% respectively, and the carbon balance being an acceptable 82%. This compares to the optimal results for CHClF₂ at 650 °C, where the observed yields were 25%, 19%, and 16%, respectively, with 92% conversion.

An interesting difference in the CHF₃ pyrolysis results as compared to the results obtained using CHClF₂ is the relative lack of CHF₂CHF₂ as a product in the CHF₃ pyrolysis. This lack of observation of CHF₂CHF₂ in the CHF₃ pyrolyses is undoubtedly the result of its H₂-promoted isomerization to CF₃-CH₂F at these high temperatures. This isomerization, which does not occur thermally in the absence of H₂, is the subject of the accompanying paper.³⁶

Table 7 presents a comparison of the "optimal" results for both CHClF₂ and CHF₃ pyrolysis.

It can be seen that the pyrolysis of CHF_3 presents some advantages, i.e., smaller requirement for hydrogen, improved carbon balance, and improved yields of CH_2F_2 and CF_3CH_2F .

Conclusions

In conclusion, strong evidence, both experimental and theoretical, has been obtained that allows probable definition of the mechanism of HFC formation during the pyrolysis of CHClF₂ and CHF₃ in the presence of hydrogen. The data that have been presented are consistent with the free radical chain process depicted in Scheme 1. It is proposed that unimolecular formation of CF₂: from either CHClF₂ or CHF₃ is followed by dimerization of CF₂: to form "hot" TFE, which abstracts H from H₂ to initiate a free radical chain process that results in formation of CH₂F₂, CHF₂CHF₂, and CF₃CH₂F.

Although optimization studies did not result in finding conditions that favor a *single* product, it was found that, under the high-temperature conditions of pyrolysis of CHF₃, the selective formation of two HFC's, CH₂CF₂ and CF₃CH₂F, was possible.

Acknowledgment. Preliminary work by S. Hub and D. Guillet, and helpful discussions with S. Hub, E. Lacroix, and J. P. Schirmann, all of Elf Atochem, are acknowledged with thanks. Support of this research by Elf Aquitaine, Inc. through funding of postdoctoral appointments for V.K. and R.R. and for funding construction of the flow reactor is gratefully acknowledged.

Supporting Information Available: Computational data tables and supplementary figures describing thermolysis data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.